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Successful Design Looks Beyond the 
Schematic
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PECL in a PICKLE
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Pseudo ECL Driver (PECL) Schematic

Clock

PECL+ PECL-
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PECL Output Simulations:
SPICE from Schematics
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PECL Outputs in Silicon

BAD
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What went wrong???
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Candidate Answers

 SPICE

 SPICE Models

 Charge feedthrough from switches

 Package lead inductance

 Package interlead mutual inductance

 Some other parasitic??
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Layout of PECL Bias and PECL input
Clock

Bias Clock
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PECL Output with 5fF coupling!!
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Lessons Learned 

 TAKE CARE WITH ALL BIAS LINES!

 Shield them from stuff below

 Shield them from stuff above

 Shield them from stuff beside
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How small is small?
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A 8-Bit SAR Case Study

 Description

 8-Bit SAR A/D Converter

 0.35mm CMOS Double-Poly, Quad Metal

 Array used “bridge capacitor” technique

 Unit Capacitor was ~48 fF (7mm x 7mm)
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8-Bit Capacitor Array

1 2 4 8 1 2 4 8

16/15

1

Unit capacitor is 48 fF
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Capacitor Array

View shows
top plate
only

8 8 8 8

8 8 2 2

8 4 D 1

8 4 4 4

D D B D

8 4 D 1

8 4 4 4

8 8 2 2

8 8 8 8

LSB
Array

MSB
Array

30um

Top plate

Bit0 control

Coupling cap
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Capacitor Array

1 2 4 8 1 2 4 8

16/15

1

Parasitic coupling

Parasitic coupling is MAGNIFIED across the bridge 
capacitor and thus for 48 fF unit capacitors a 3 fF 
parasitic coupling capacitor is magnified by 16!  
This DOUBLES the weight of Bit0!!!  Thus 3fF 
changes an 8-bit converter to a 7-bit converter.



16

Does Plastic Change Your Life?
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Coupling Varies with Dielectric

SiO2 Top Plate Top Plate

Free air

Before plastic encapsulation, the fringe extends
into free air (e ~ 1)
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Coupling Varies with Dielectric

SiO2 Top Plate Top Plate

Plastic Pkg

After plastic encapsulation, the fringe extends
into plastic (e > 1, perhaps 3?)
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Additional Solution:  Metal Shield

 As much of the capacitor area as possible 
should be covered with metal.

 This caused the fringe fields to terminate 
on the “shield” (the metal covering) and 
not on adjacent capacitors.  Because this 
was a single-metal process the coverage 
was not perfect.

 In today’s multi-metal processes, using 
one layer as a shield plate is easy.
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The Whole Chip Oscillates!
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The Circuit

+

-

The rest
of the chip

1.2 Volts

Bandgap Reference
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Laboratory Observations

Bias
Pin
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Spice Simulation

Bias
Pin



24

The Moral of the Story...

 Watch out for BIG feedback loops

 Dont always ignore 100mW of metal
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“You Don’t Miss the Water ‘til the Well 
Runs Dry”
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Parasitic Bipolars

 In a Bandgap Reference design, it was 
discovered that a P+ resistor string was 
lying inside an N-Well which was floating.

 Is that a problem?
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The Circuit (w/o Parasitics)

P+

P+

N-Well

R 1

I

V1

R
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The Circuit (w/ Parasitics)

P+

P+

N-Well

R1

I

V1

R

Big, leaky
junction

Temp. Leakage
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The Moral of the Story

 Think about where your N-Well is 
connected.

 Use three-terminal resistors!!!

 This forces you to think!
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Remember Christian Huygens

Coupled Oscillators
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The Circuit

Phase
Detector gm

Charge
Pump

DACDigital

Synthesizer with VCO

Clock Recovery DAC and VCO
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Transfer Function of CR VCO
Measured in the Lab

Control Voltage

VCO Freq

Frequency of Synth VCO

CR VCO locks to Synth VCO
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Layout of Two VCOs
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Layout Detail

Separation
approx: 1.5mm
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Solution

 Separate VCOs with distance

 Reduce substrate coupling path with 
improved layout
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The Clock Experiment



37

Matching Principles
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Matching Principles

 Unit Replication

 Yiannoulos-Path

 Uniform Perimeters

 Avoid hard corners for capacitors

 Common Centroid

 Photolithographic Invariance

 The same means the same
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Unit Replication Principle
Capacitor Example

1x to 4x

Total capacitance has an area and a perimeter component
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Perimeter/Area Ratio

C C CA P1 1 1= +

C C CA P2 2 2= +

Match CP/CA to force the overall ratio to the area ratio.
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Unit Replication

1x to 4x

Both areas and perimeters are matched!

1:4 ratio for perimeters, 1:4 ratio for areas
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Unit Replication

 The Unit Replication Principle applies to:

 Capacitors

 Transistors

 Resistors
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Non-Unit Ratios

 What do you do if you need a ratio that 
requires a non-unit ratio?
(I.e., What do you do if the size of a unit 
capacitor for the particular ratio desired is 
too small to use the unit matching 
technique.)

 E.g., 1:4.1; Unit cap is 10fF.  You cannot 
build an 0.1fF cap.

Rule:  Don’t use “i.e.” when you mean “e.g.”
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Solution:  The Yiannoulos1-Path 
Technique

Example:  Desired Ratio - 13.8:14

Ratio of areas:  14:13.8

1 2 3

4

5

6

78

10

9

16

17

18

28

19

27 26

25

24

23

20

21

22

11

15
14

13

12

Area=0.8 units

Length of side=0.8

Length of side
for one unit=1

1 2 3

4

567

9

10 11 12

13

8

Ratio of perimeters:  28:27.6
Amazing!

1.  Aristedes A. Yiannoulos
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Uniform Perimeter Principle
Capacitor Example

How accurate is the 1:4 ratio given the perimeter difference?
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Uniform Perimeter Principle

The perimeter of every unit is the same.
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 Imagine yourself as being really small.

 Stand at the center of a unit component 
and peer in all directions.

 If you cannot determine which unit 
component you are standing on, then you 
have properly applied the Uniform 
Perimeter Principle.

Uniform Perimeter Principle

How far out do you have to match?  Just far enough!



48

Avoid Hard Corners for Capacitors

Why?
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Consider a Circle vs. Square
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Perimeter effects are minimized
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Common Centroid Principle
Transistor Example

Tox

x

x

A B C

VTA< VTB< VTC

IBC< 2IA

Thus:
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Common Centroid Principle

Tox

x

x

AB C

(1/2)(VTC+ VTB) = VTA

IBC = 2IA

Thus:

VTB< VTA< VTC

to a first-order approximation
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Photolithographic Invariance Principle

Because of implant angle, polysilicon casts a shadow
on to drain/source region.

FOX

Ion Implant

source drain
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Photolithographic Invariance Principle

S

D1

S

D2

M1 M2

CGD1 < CGD2

S

D1

S

D2

M1 M2

CGD1 = CGD2
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The Same IS The Same

 Unit matching requires that every aspect 
of things being matched are the same.

 For MOSFETs, this means metal coverage 
as well!

A B

Transistors A and B
are NOT matched!Metal 3
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Metal Coverage Issues

 For critical matching, do not cover 
matching transistors with metal.

 For less critical matching, at least cover 
the matched transistors in the same way.
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Package Parasitics

Picking Proper Package Pinout



57

Typical Plastic Package
Cross Section
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LCC Package
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LCC Package Parasitics

Note:  CL is load capacitance and CLL is lead-to-lead capacitance

LCC Package Data

Lead Count Electrical parameter

R (mW) L (nH) CL (pF) CLL (pF)

20 square 68 - 78 3.5 - 6.3 0.8 - 0.9 0.3 - 0.4
28 square 68 - 78 3.7 - 7.8 1.0 - 1.1 0.4 - 0.5

28 rectangle 68 - 78 3.3 - 4.2 0.6 - 0.7 0.2 - 0.3
32 rectangle 68 - 78 3.9 - 5.8 0.8 - 1.1 0.1 - 0.6
44 square 68 - 78 4.3 - 6.1 1.1 - 1.4 0.2 - 0.8
52 square 68 - 78 6.1 - 8.4 1.0 - 1.3 0.2 - 0.8
68 square 68 - 78 5.3 - 8.9 1.4 - 2.0 0.2 - 1.0
84 square 68 - 78 8.4 - 10.8 1.8 - 2.7 0.25 - 1.2
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QFP Package
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QFP Package Parasitics

Note:  CL is load capacitance and CLL is lead-to-lead capacitance

QFP Package Data

Lead Count Electrical parameter

R (mW) L (nH) CL (pF) CLL (pF)

84 70-80 5.8 - 6.6 < 1.0 < 0.5
100 70-80 6.1 - 7.1 < 1.5 < 1.0
132 70-80 7.3 - 8.5 < 2.0 < 1.5
164 70-80 8.0 - 14.5 < 2.2 < 1.5
196 70-80 9.0 - 15.5 < 1.5 < 1.6
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Typical QFP Leadframe

Pin 1
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PQFP Pin-Pin Mutual Inductance

Mutual Inductance
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PQFP Self Inductance

Self Inductance
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TBGA CONSTRUCTION

Liquid
Encapsulant

Solder
Mask

Copper Traces
and Solder
Ball Pads

Polyimide
Dielectric

Thermal Set
Adhesive Copper Heat

Spreader Die Attach
Epoxy

Pin 1
Indicator

Ground Plane,
Plated Area For
Down Bonds

Sn/Pb/Ag
62/36/2  Eutectic
Solder Balls

IC Mounted Directly into
Cavity of Heat Spreader

Ground
Bonds

Signal/Power
Bonds

NOT TO SCALE
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Copper Heat Spreader
Die Attach Epoxy

Thermal Set 
Adhesive

Polyimide Dielectric

Copper Traces and
Solder Ball Pads Signal / Power

Bonds
Ground Bonds Sn/Pb/Ag

62/36/2  Eutectic
Solder Balls

Solder Mask

NOT TO SCALE

TBGA

DIE

Liquid Encapsulant
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L11 L12 L11 L12 C11 C12 C11 C12

256 PBGA

 Measured       6.4    0.3    1.8     0.3            1.1   <0.1     0.7    <0.1

 Modeled         6.5    0.4     2.0    0.8            1.0   <0.1     0.4    <0.1

256 TBGA

Measured        9.0     3.0    3.5     1.2           1.0     0.5     0.9      0.3

Modeled          9.1     2.5    3.7     1.3           1.0     0.3     0.9      0.1

352 TBGA               

Measured       10.0    2.0    3.6     0.8 1.3     0.2     1.1      0.1
Modeled         10.4    2.1    3.4     0.9           1.0   <0.1    0.4     <0.1

*256=27x27mm / **352=35x35mm

TBGA vs PBGA

ELECTRICAL COMPARISON
Measured and Modeled Data

INDUCTANCE (nH)        CAPACITANCE (pF)
Corner      Center Corner     Center
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NOT TO SCALE

EncapsulantGold Wire Bond
Die Attach Epoxy

Copper Foil Pad
and Interconnect

Plated Through Hole

Solder Mask

Thermal Vias BT Resin/Glass
Epoxy PCB

Solder Ball , 62:36:2

Die Pad 

PBGA DESIGN

DIE
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PBGA MULTI-CHIP MODULE

NOT TO SCALE

Encapsulant

Die Pad
Gold Wire Bond Die Attach Epoxy

Plated Through Thermal Vias

Copper Foil Pad
and Interconnect

BT Resin/Glass
Epoxy PCB

Plated Through Hole

Solder Mask

Solder Ball, 62:36:2

DIE DIE
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Minimize Sensitivity to Package 
Inductance

 Take advantage of orthogonality.

 Keep noisy digital currents in pins far 
away from sensitive analog input pins.

 Use shortest pins for  circuits requiring 
lowest inductance.

 Force opposing loop currents
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Take Advantage of Orthogonality

VDDD

GNDD

Ain+Ain-VDDD

GNDD
Ain+Ain-

BAD GOOD

In most cases you are probably OK to place offending pins on 
opposite sides of the package if the package is large enough.
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Force Opposing Currents

VDDD

GNDD
Ain+Ain-

BAD BETTER

VDDD

GNDD

Ain+Ain-
GNDD

Opposing
loops cancel
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Force Opposing Currents

VDDD

GNDD

Ain+Ain-

BETTER YET

GNDD

Orthogonality plus opposing currents
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THE END


