Successful Design Looks Beyond the Schematic

PECL in a PICKLE

Pseudo ECL Driver (PECL) Schematic

PECL Output Simulations: SPICE from Schematics

4

PECL Outputs in Silicon

BAD

What went wrong???

Candidate Answers

- SPICE
- SPICE Models
- Charge feedthrough from switches
- Package lead inductance
- Package interlead mutual inductance
- Some other parasitic??

Layout of PECL Bias and PECL input Clock

PECL Output with 5fF coupling!!

Lessons Learned

TAKE CARE WITH ALL BIAS LINES!
 Shield them from stuff below
 Shield them from stuff above
 Shield them from stuff beside

How small is small?

A 8-Bit SAR Case Study

Description

 8-Bit SAR A/D Converter
 0.35μm CMOS Double-Poly, Quad Metal
 Array used "bridge capacitor" technique
 Unit Capacitor was ~48 fF (7μm x 7μm)

8-Bit Capacitor Array

Unit capacitor is 48 fF

Capacitor Array

View shows top plate only

Capacitor Array

Parasitic coupling is MAGNIFIED across the bridge capacitor and thus for 48 fF unit capacitors a 3 fF parasitic coupling capacitor is magnified by 16! This DOUBLES the weight of Bit0!!! Thus 3fF changes an 8-bit converter to a 7-bit converter.

Does Plastic Change Your Life?

Coupling Varies with Dielectric

Before plastic encapsulation, the fringe extends into free air ($\epsilon \sim 1$)

Coupling Varies with Dielectric

After plastic encapsulation, the fringe extends into plastic ($\epsilon > 1$, perhaps 3?)

Additional Solution: Metal Shield

- As much of the capacitor area as possible should be covered with metal.
- This caused the fringe fields to terminate on the "shield" (the metal covering) and not on adjacent capacitors. Because this was a single-metal process the coverage was not perfect.
- In today's multi-metal processes, using one layer as a shield plate is easy.

The Whole Chip Oscillates!

The Circuit

Laboratory Observations

22

Spice Simulation

The Moral of the Story...

Watch out for BIG feedback loops
 Dont always ignore 100mΩ of metal

"You Don't Miss the Water 'til the Well Runs Dry"

Parasitic Bipolars

In a Bandgap Reference design, it was discovered that a P+ resistor string was lying inside an N-Well which was floating.
 Is that a problem?

The Circuit (w/o Parasitics)

The Circuit (w/ Parasitics)

The Moral of the Story

- Think about where your N-Well is connected.
- Use three-terminal resistors!!!
 This forces you to think!

Remember Christian Huygens

Coupled Oscillators

The Circuit

Transfer Function of CR VCO Measured in the Lab

Frequency of Synth VCO

Layout of Two VCOs

Layout Detail

Separation approx: 1.5mm

Solution

Separate VCOs with distance
 Reduce substrate coupling path with improved layout

The Clock Experiment

Matching Principles

Matching Principles

- Unit Replication
- Yiannoulos-Path
- Uniform Perimeters
- Avoid hard corners for capacitors
- Common Centroid
- Photolithographic Invariance
- The same means the same

Unit Replication Principle Capacitor Example

Total capacitance has an area and a perimeter component

Perimeter/Area Ratio

Match C_P/C_A to force the overall ratio to the area ratio.

Unit Replication

Both areas and perimeters are matched! 1:4 ratio for perimeters, 1:4 ratio for areas

Unit Replication

The Unit Replication Principle applies to: Capacitors Transistors Resistors

Non-Unit Ratios

- What do you do if you need a ratio that requires a non-unit ratio? (I.e., What do you do if the size of a unit capacitor for the particular ratio desired is too small to use the unit matching technique.)
- E.g., 1:4.1; Unit cap is 10fF. You cannot build an 0.1fF cap.

Rule: Don't use "i.e." when you mean "e.g."

Solution: The Yiannoulos¹-Path Technique

Example: Desired Ratio - 13.8:14

Ratio of areas: 14:13.8 Ratio of perimeters: 28:27.6 Amazing!

1. Aristedes A. Yiannoulos

Uniform Perimeter Principle Capacitor Example

How accurate is the 1:4 ratio given the perimeter difference?

Uniform Perimeter Principle

The perimeter of every unit is the same.

USE IT Uniform Perimeter Principle

- Imagine yourself as being really small.
- Stand at the center of a unit component and peer in all directions.
- If you cannot determine which unit component you are standing on, then you have properly applied the Uniform Perimeter Principle.

How far out do you have to match? Just far enough!

Avoid Hard Corners for Capacitors

Why?

Consider a Circle vs. Square

$$A_{circle} = \pi r^{2}$$

$$A_{square} = d^{2}$$

$$if \quad A_{circle} = A_{square}$$

$$r = \frac{d\sqrt{\pi}}{\pi}$$

$$\frac{P_{circle}}{P_{square}} = \frac{2\sqrt{\pi} d}{4d} = \frac{\sqrt{\pi}}{2} < 1$$

Perimeter effects are minimized

Common Centroid Principle Transistor Example

Common Centroid Principle

$$V_{TB} < V_{TA} < V_{TC}$$
$$(1/2)(V_{TC} + V_{TB}) = V_{TA}$$
Thus:
$$I_{BC} = 2I_A$$

to a first-order approximation

Photolithographic Invariance Principle

Because of implant angle, polysilicon casts a shadow on to drain/source region.

Photolithographic Invariance Principle

The <u>Same</u> IS The <u>Same</u>

Unit matching requires that every aspect of things being matched are the same.
For MOSFETs, this means metal coverage as well!

Transistors A and B are NOT matched!

Metal Coverage Issues

- For critical matching, do not cover matching transistors with metal.
- For less critical matching, at least cover the matched transistors in the same way.

Package Parasitics

Picking Proper Package Pinout

Typical Plastic Package Cross Section

LCC Package

LCC Package Parasitics

LCC Package Data

Lead Count	Electrical parameter						
	R (m Ω)	L (nH)	С _∟ (рF)	C _{LL} (pF)			
20 square	68 - 78	3.5 - 6.3	0.8 - 0.9	0.3 - 0.4			
28 square	68 - 78	3.7 - 7.8	1.0 - 1.1	0.4 - 0.5			
28 rectangle	68 - 78	3.3 - 4.2	0.6 - 0.7	0.2 - 0.3			
32 rectangle	68 - 78	3.9 - 5.8	0.8 - 1.1	0.1 - 0.6			
44 square	68 - 78	4.3 - 6.1	1.1 - 1.4	0.2 - 0.8			
52 square	68 - 78	6.1 - 8.4	1.0 - 1.3	0.2 - 0.8			
68 square	68 - 78	5.3 - 8.9	1.4 - 2.0	0.2 - 1.0			
84 square	68 - 78	8.4 - 10.8	1.8 - 2.7	0.25 - 1.2			

Note: C_L is load capacitance and C_{LL} is lead-to-lead capacitance

QFP Package

QFP Package Parasitics

QFP Package Data								
Lead Count	Electrical parameter							
	R (mΩ)	L (nH)	С _∟ (рF)	C _{LL} (pF)				
84	70-80	5.8 - 6.6	< 1.0	< 0.5				
100	70-80	6.1 - 7.1	< 1.5	< 1.0				
132	70-80	7.3 - 8.5	< 2.0	< 1.5				
164	70-80	8.0 - 14.5	< 2.2	< 1.5				
196	70-80	9.0 - 15.5	< 1.5	< 1.6				

Note: C_L is load capacitance and C_{LL} is lead-to-lead capacitance

Typical QFP Leadframe

PQFP Pin-Pin Mutual Inductance

PQFP Self Inductance

TBGA CONSTRUCTION

TBGA

NOT TO SCALE

TBGA vs PBGA ELECTRICAL COMPARISON Measured and Modeled Data

	INDUCTANCE (nH)			CAP	CAPACITANCE (pF)			
	Corner Center			Co	rner	Center		
	<u>L11</u>	<u>L12</u>	<u>L11</u>	<u>L12</u>	<u>C11</u>	<u>C12</u>	<u>C11</u>	<u>C12</u>
256 PBGA								
Measured	6.4	0.3	1.8	0.3	1.1	<0.1	0.7	<0.1
Modeled	6.5	0.4	2.0	0.8	1.0	<0.1	0.4	<0.1
256 TBGA								
Measured	9.0	3.0	3.5	1.2	1.0	0.5	0.9	0.3
Modeled	9.1	2.5	3.7	1.3	1.0	0.3	0.9	0.1
352 TBGA								
Measured	10.0	2.0	3.6	0.8	1.3	0.2	1.1	0.1
Modeled	10.4	2.1	3.4	0.9	1.0	<0.1	0.4	<0.1

*256=27x27mm / **352=35x35mm

PBGADESIGN

68

PBGA MULTI-CHIP MODULE

NOT TO SCALE

Minimize Sensitivity to Package Inductance

- Take advantage of orthogonality.
- Keep noisy digital currents in pins far away from sensitive analog input pins.
- Use shortest pins for circuits requiring lowest inductance.
- Force opposing loop currents

Take Advantage of Orthogonality

BAD

GOOD

In most cases you are probably OK to place offending pins on opposite sides of the package if the package is large enough.

Force Opposing Currents

BAD

BETTER

Force Opposing Currents

BETTER YET

Orthogonality plus opposing currents

THE END