TIME AND FREQUENCY DOMAIN RELATIONSHIPS

FOR SECOND ORDER SYSTEMS

There are many reasons for considering the time and frequency
domain relationships of a second order system in the study of operational
amplifiers. One is that many operational amplifier configurations can
be modeled with reasonable accuracy assuming just a second order system.
Such a procedure represents a reasonable compromise between complexity
and accuracy of the model. Another reason is that these relationships
allow us to predict frequency domain performance from the simpler to

measure time domain performance.

General Second Order System in the Frequency Domain

The general transfer function of a low-pass, second order system in

the frequency domain using voltage variables is

V_(s) Aownz Aowoz
— = 5 =+
e Vin(s) ~ sz+2;m s+w s s?‘+ (w /Q)s+w 2 -
n n o o
where A0 = the low frequency gain of Vo(s)/Vin(s)
e M the pole frequency in radians per second
¢ = the damping factor (=1/2Q) !/ .
@S
Q = the pole Q (=1/2C) #(.5)

Equation (1) is illustrated in Fig. 1.
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The magnitude of the frequency response can be found from (1) as

sz
on

[AGw) | = (2)
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However, (2) may be generalized by normalizing the amplitude with respect

to Ao and the radian frequency by wn to give

IA(jw/wn)| 2 1
A

(3)
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A plot of (3) in dB versus log w is shown in Fig. 2 where  or 1/2Q is

used as a parameter.
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Fig. 2 - Gain magnitude response for various values of C for a

second order, low-pass system.
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The second order function of (1) is found in the analysis of many

practical systems. Consider the single-loop, feedback block diagram of

Fig. 3. E‘

Vils) » Vo)
3

Fig. 3 - Single-loop, feedback block diagram.

The closed loop gain , A(s), can be expressed as

V. (s)
As) = 2 Saf

V(5 1+aB (4)

Let us assume that o and B are real and that "a" is the amplifier's gain

and can be approximated as

oy b

(s +wl) (s+ “’2)

a(s) =

(5)

where a, is the DC gain of the amplifier and wy and w, are real axis

poles. Substitution of (5) into (4) gives

a w,w

12
A(s) = (o) 2 (6)
s+ (w1+w2)s+wlm2(1+ aOB)
Comparing (6) with (1) results in the following identifications.
-1
= a,
A = (aa _B)(I*%A) (7
= =
w =0 lew2(1+a08) (8)
and wl+ub
2z = 1/Q = (9)

g /wlwz 1+ aoB)

The same principles can be applied to a second order band-pass or
high-pass system, but the low-pass case is of more practical interest to
us and will be the only one considered. It is also possible for B (and

thus 0) to become frequency dependent which further complicates the

analysis.




Low-Pass Second Order System in the Time Domain

Unfortunately, it is time consuming to make measurements in the
frequency domain. Therefore we are interested in determining the freq-
uency domain performance from the time domain. This information is
developed as follows. The general response of (1) to a unit step can

be written as

Fa 2 =
vo(e) = A 1-—L— TN sin((/1- 2 c4 )] (10)

b=t

where 2
¢ = tan © ok (11)
The step response plotted in normalized amplitude versus radians is

shown in Fig. 4.
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Fig. 4 - Step response as a function of Z for a low-pass, 2nd order system.




Let us consider first the underdamped case where Z<l. For the under-

damped case there will always be an overshoot as defined by Fig. 5.
Mo(1)
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Fig. 5 - Illustration of overshoot and tp.
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The overshoot can be expressed as

o > /2.
Overshoot = exp[ ——1] . ¢= _4ns) (12)
1—c2 2 T2 + Lnlo.S)

The time at which the overshoot occurs, tp, is shown in Fig. 5 and can

be found as

(13)

Thus the measurement of the overshoot permits the calculation of ;
(or 1/2Q). With this information and the measurement of tp’ one can
calculate w from (13). Therefore the frequency response of a second
order, low-pass system with <1l can be determined by measuring the over-
shoot and tp of the step response.

Next consider the overdamped case where Czl. In this case there is

no overshoot. The unit step response can be simplified from (10) to yield

B B A I L A
2
2/C2—1 G =t =k C*—/Qz-l

It is difficult to measure various aspects of this response and thus

vo(t) = A0 1- (14)

determine 7 and wn. Fortunately there are very few occasions where we
have ¢>1. If £>1, then the best result is probably obtained by matching
the step response to one of the curves for £>1 of Fig. 4. More accuracy

could be achieved by evaluating vo(t) for say wnt=4 and selecting values

of T until vo(4/wn) matches with the experimental data at this point.
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Determination of Phase Margin and Cross-over Frequency from I and wn

In the previous section we have seen how C and wn of a second order
system can be determined by the time domain step response. It is the object-
ive of this section to show how to find the phase margin, ¢m, and the cross-

over frequency, W, from ¢ and wn. Fig. 6 shows the meaning of ¢m and mc.
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Fig. 6 - Illustration of cross-over frequency and phase margin.

In order to assist in developing the desired relationships, it will be

convenient to assume that B (thus a) is real. From (4) we may solve for ap

to get
1/0
= 15
e OV R e
Substituting (1) into (15) gives the loop gain as
Aw 2/a A /o
aB = £ = ° (16)

2 2 2
"+ 2w sta, ) = (A, /o) (852 4 or By +1-(a fo)
n n

when |a8,=1, then w=mc so that (16) becomes




A /a
lag| = : = (17)

A 29 2
[(1-—aQ)— (wc/wn) 1 +[2C(wc/wn)]

Since |a8|=l, we may solve (17) for w, to get

“ 1/2
o, = w [/ 1265~ -A /)17 - (1-28 fo) - 267 + (1=A /o)) (18)

Thus, knowing Ao and o and W and T, we may calculate the cutoff frequency of

a second order system. In an operational amplifier circuit, a=Ao so that (18)

becomes

1/2
w, = [/ s +1 - 209 ' (19)

&

Fig. 7 gives a plot of this useful function.
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Fig. 7 - Plot of wc/wn versus { for a low-pass, second-order system.

The phase shift of aP can be found from (16). However we must add T
to this value to account for the minus sign of the summing junction of Fig. 3.

Thus

chc/wn

5] (20)
(1- Ao/a) - (wC/wn)




Since Ao=0L, we may write (20) as

6 = tan '[=25- ] (21)

w, J W
Substituting (19) into yields

tan_l - (22)

s re g
//42;“+1“Zc

Another form of (22) which is equivalent is

¢

¢m =£gs_l[ 42;4+1 - 28‘] (23)

Fig. 8 give a plot of ¢m of (22) oxr-(23).
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COMPENSATION OF OP AMPS

GENERAL

Compensation is necessary in op amp circuits because the very high
values of the loop gain may lead to undesirable performance or instability
depending on the feedback network. The basic single loop feedback diagram

shown in Fig. 1 will be used to model the circuits discussed.

Fig. 1 - Block diagram of a single loop feedback system.

Notationwise, a is the forward, unloaded gain of the op amp and B is the
reverse transmission factor. A very important consideration to be made in
the analysis of the open loop gain, aB, is that a is considered large but not
infinite. Thus in the open loop considerations made in this analysis we

will not be able to use the null port concept. This results in a unique
circumstance which permits us to place components in the open loop path

which will effect the open loop gain but not effect the closed loop gain.

Let us expand on this very important principle further by considering the

inverting and noninverting amplifiers of Fig. 2.

Ry

-
a.) b.2)
Fig. 2 - a.) Noninverting amplifier and h.) inverting amplifier

configurations of the op amp.

The loop can be opened cither at the input or the output of the op amp. 1If
we choose the output, then Fig. 3 results for both of the configurations of
Fig. 2. Remember that the signal source if a voltage is grounded so that the
open loop calculations for the noninverting and inverting configurations arc

tdenttcal.
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Fig.-3. ~ Open loop cireunit of Fig. 2.

Now using the above principles, we can place an impedance, Z, as shown in
Fig. 3 connected between the plus and minus input terminals of the op amp.
This impedance will effect the open loop gain and in particular it will
modify B, however, Z will not effect the closed loop gain of either circuit
of Fig. 2 (unless the frequency is sufficiently high that ap is approaching
unity). Consequently, in our compensation schemes we shall try to add
elements in the position of Z so that we may modify the loop gain but not
effect the closed loop gain. |
The approach to compensating op amp circuits can be divided into two
methods depending upon whether the compensation is applied to the op amp,
i.e. a, or whether the compensation is applied to the B network such as the
Z in Fig. 3. We shall only consider the second method but it is worthwhile
to mention that the familiar Miller compensation technique is an example of
the first method. Obviously, internally compensated op amps such as the
741 will not require other compensation if the feedback network consists
only of resistors. However, in many applications, active, elements appear
in the feedback loop and consequently, further compensation of internally
compensated amplifiers may be required. As far as the user is concerned,
this additional compensation will have to be of the second method which is
the subject of this analysis.
The second method of compensation called B compensation has three basic

techniques which are:

1. DC loop reduction.

2. Lag compensation.

3. Lead compensation.
These methods will be presented and explained with respect to the op amp

circulits of Eig. 2.



Degrees

DC LOOP REDUCTION

In the DC loop reduction method of compensation, the impedance Z in
Fig. 3 is replaced by a resistor R. The application of the method is very
straightforward as will be illustrated. The first step in all compensation
schemes is to plot the magnitude and phase of the frequency response of the
open loop gain, a . It helps to do this step twice. The first time the
frequency includes the entire range of interest. Fig. 4 is an illustration
of these plots. Notice that when |aB| = 1 (or 0 dB) that this defines the
crossover frequency, wc. The phase margin, PM, of the system %s then  found
by the difference between the phase plot and O degrees at the frequency wc.
The second plot is the same as the first except the range in the vicinity
of wc is expanded both in amplitude and frequency. For example, Fig. 5 re-

presents a more detailed plot of Fig. 4 in the vicinity of w, -
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Fig. 5 - Expanded plot of Fig. 4.
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The objective of DC loop reduction compensation is to insert a resistor
for Z in Fig. 3 and lower the magnitude of the aB curve until w has been
e
decreased sufficiently so that the desired phase margin is obtained. Consider

Fig. 6 which is used to implement this form of compensation.

Fig. 6 - DC loop reduction compensation configuration.

One can see from this diagram how the noninverting and inverting configurations
become identical under open loop conditions. For the inverting configuration,
Vinl would be the input voltage source whereas for the noninverting configura-
tion Vin2 would be the input voltage source. The loop gain of ;his circuit

is found as

\Y
2 3
= w w Al omaisteden) (1)
V1 1+-B(R2/R)
where Rl
= —e (2)
R]_+R2

We see that the B network has been modified by the presence of the resistor

R resulting in a new B of

i

B BR,/R

) = KB 3)

Therefore, if one knows K, then R can be found as
BR2

By -

Thus, we may outline an approach to DC loop compensation as follows:
1. It is assumed that a and B are known and that ¢m is the desired

phase margin.




2. Find the frequency, wc', where the difference between the phasc shift

of -af and 0 degrees is equal to ¢m. Therefore,

6, = tan 'la(w_)Bw "] (5)

3. Find the difference between laBI atw = wc' and zero dB. This is
the amount |aB| is to be reduced. Let this value be k expressed in dB.
4. Solve for K by

kwpg 0 (6)
(The minus sign is used because k is a decrease in gain.)

5. Use (4) to solve for the value of R.

Example 1
Use the DC loop reduction method of compensation to achieve a phase
margin of 60 degrees for the circuit of Fig. 7 when the amplifier's gain

is given as,

5
10
a(s) = =% =5 (7)
(s+1)(10 "s+1)(10 "s+1)
R2
50K
e
5 \"4 b
o Yot
a(s)

]
=

Fig. 7 - Inverting configuration with a closed loop gain of -5.

The value of B=1/6. Therefore aB is equal to

s OGBS @
(s+1)(10 s+1)(10 s+1)
and is plotted on Figs. 4 and 5. To achieve ¢m=60 degrees, wC'=5000 rps.
At this frequency, k=10 dB. Thus, from (6) K=0.3162. Finally, from (4)
we gel R = 3.854 K. The new |uﬁ'| Is plotted as a dotted line on Flgs.

4and 5.



PHASE LAG COMPENSATION

Phase lag compensdtion is very similar to the DC loop reduction method.
However, Z consists of a capacitor placed in series with the resistor R.
The phase lag configuration is shown in Fig. 8 where R has been relabelled

R3 and the capacitor is labelled C3.

Ra
Vin

Fig. 8 - Phase lag compensation configuration.

For frequencies above l/R3C3, Z becomes simply R3 and we have the same circuit

as Fig. 6. However, at frequencies less than 1/R3C3,

and Z approaches infinity. The advantage of this method

the reactance of the
capacitor dominates R3
is that at low frequencies one has the original aB curve and therefore better
low frequency performance because the factor 1+af is larger (i.e. better
desensitization) than that for the DC loop reduction scheme.

The transfer function of Fig. 8 can be written as

V_2_ € a( Rl ) Rl+ R2 s+1/(R3C3) i
Y e et R1+R2+$ s s 2 :
3 R3C3 Rl+ R2+ (RlRZ/R3)
However, we may express the modified B as,
s+w3
1 = T S A =
8 = 8|i/m (— (‘*’3/“‘)) BC, () (10)
where
B = Rl/(Rl+ R2) (11)
R.+R_+ (R.R./R)
TEe S W o
= Y l+-B(R2/R3) ()
A 2 ;
and
= 13
w, l/(R3C3) (13)



The pole-zero plot of (10) is illustrated in Fig. 9. Since m>1, the pole

jw
© X I Ead]
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Fig. 9 - Pole-zero plot of phase lag compensation, G3(s).

is closer to the origin than the zero. A plot of the magnitude and phase of
G3(s) is shown in Fig. 10. We see that the pole break-frequency is located

at w/w3=l while the break-frequency of the zero is m times larger. We notice
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Fig. 10 - Magnitude and phase response of G, (jum/w,).




with some concern that the phase shift of G3(jwm/w3).has considerable phase
lag at frequencies between the pole and zero breakpoints. This could easily
end in disaster if the pole or zero were located close to wc. Gonsequently,
in our use of the lag network, we will try to keep the pole and zero sufficient-
ly less than wc so that the phase lag contribution of G3(jwm/w3) has almost
returned to zero. This consideration leads to 'one of the rules developed for
designing the phase lag compensation network. This rule is to place the zero
of the phase lag network at 1/10 of the desired crossover frequency. However,
even when the zero is 1/10 of the desired crossover frequency there is still
some phase shift of G3(jw). The phase shift of GS(jw) can be expressed in
general as,

Arg[GB(jud] = tan_l(m/wB) - tan—l(wm/w3) (14)

The zero frequency is w, so when the frequency is 10w, the phase shift of

3 3

G3(jm) becomes,

Arg[G3(jud] = tan_l(lo) - tan_l(IOm) (15)
which can be approximated as
Arg[QB(jud] = 84.3°- (90°- 5.73%/m) = -5.71°+ 5.73%/m (16)

providing that 10m>1. For values of m in the vicinity of 10, the phase shift

due to G3(jw) at w=10w. will be approximately -5°2. Thus we shall incorporate

3
this additional phase into the following design procedure.

1. It is assumed that a and B are known and that ¢m is the desired

phase margin.

2. Find the frequency, wc', where the difference between the phase of
-aB and zero degrees is equal to ¢m4-5°.

3. Find the difference between |aB| at w = wc' and zero dB. This is
the amount |aB| is to be reduced. Let this value be k expressed in dB.

4. Solve for m by

1/m = 10—(k/20) or m = 10(kA10) (17)

5. Using (12) we get

= = 18
Ry BRZ/(m 1) (18)
which is used to solve for R3.
6. Setting Wy = wc'/lo gives
= 1
C3 - 10/(wC R3) (19)

e
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This design procedure will result in the zero of the lag network being placed
at a frequency of wc'/IO and the pole of the lag network‘being placed at a

frequency of wc'/lOm.

Example 2

Use the phase lag compensation teéhnfque to achievé a phase margin
of 60 degrees for the circuit of Fig. 7 when the amplifier's gain is
given by (7).

Adding 5 degrees to the desired phase margin gives 65 degrees.
The crossover frequency which corresponds to this phase margin is found
Fig. 11 as 3500 rps. Thus k = 13 dB. This gives m = 4.4668. Therefore,
equations (18) and (19) result in R3=2.404 K2 and C3=l.189uF. The break-
points of the phase lag network are 350 rps for the zero and 78.36 rps
for the pole. Fig. 11 shows the resulting magnitude and phase plots of
the compensated loop gain. It is seen that the phase margin is satisfied.
The actual value of the phase margin found by evaluating the arctangents
is 64.29 degrees. While this is close enough we see that the reason it is
not 65 degrees is that the actual aB phase at 3500 is 68.72 degrees rather
than 65 degrees and that m is small so that the correction factor should
be -4.43 degrees rather than -5 degrees. The sum of these two errors
equals 4.29 degrees which is exactly the amount of phase shift in excess
of ¢m. This brings up an important point. If closer accuracy is needed
then the asymptotic curves of Fig. 11 should only be used as a guideline

and the actual values should be calculated.
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PHASE LEAD COMPENSATION

Phase lead compensation is similar to the phase lag in. that a pole and
zero are introduced into the open loop gain. However, in phase lead, the zero

is closer to the origin of the complex frequency plane than the pole. Fig.

12 shows a phase lead network. Unfortunately, it is difficult to fit this

Ra

Fig. 12 - A phase lead network.

network into Z of Fig. 3. While there are forms which realize Fig. 12 and
these forms only effect the open loop transfer function (See Chapt. 13 of
Roberge, Operational Amplifiers, Wiley, 1975) we shall consider a simpler

approach. Fig. 13 shows an implementation of phase lead in the open loop

cirendt of Fig. 3. C2 is in parallel with the feedback resistor, R2. R3
has been included to provide additional flexibility since the values of Rl
(
Ca
V| g
R, : Vy
R 3 +
@

Fig. 13 - Phase lead compensation of Fig. 3.

and R2 will be determined by the closed loop gain requirements. The value of

C2 will be chosen so that its influence upon the closed loop gain will be

minimal.

The open loop gain, VZ/Vl’ of Fig. 13 is found as

1
v & et
B 22
=—i=iiig (20)
Vi 1 Ba: 8y
S+R—C— (l+~R— + —
2%2 1 3




=13

Therefore, the modified B can be written as

s+-—l——
R:C s+w_/m
B! = 2.2 33 2 9
R R s +w (21)
1 2 2 2
stige ity 5
2-2 3 1
where : R2 Rz
R ey (0l oy it S o o) (22)
2 R2C2 Rl R3
o S TR
m=1+R—+R—=B—+§— (23)
1 5 3
Note that if R3 is infinite, that
w, = l/(BR2C2) : v (24)
and
m=1/8 (25)

Equation (21) is the general form of a phase lead network transfer

function. Let us designate this transfer function in (21) as GZ(S)' The
‘f

Fig. 14 - Pole-zero plot of a phase lead network.

pole-zero plot of GZ(S) is shown in Fig. 14.

37 £)-
F4Y 24

—wz -w2/m

The magnitude and phase response for various values of m is shown in Fig. 15.

It is seen that the pole is located at w/w2=l while the zero is at w/w2=l/m.

We see that the phase lead network is useful for counteracting the phase lag

of the amplifier. However, we must be careful that the phase lead network

does not '"boost' the open loop gain and remove the stabilizing influence of

the leading phase shift. In order to minimize the influence of the magnitude
of G2(s) upon the open loop gain, we will try to select the zero and pole of
G2(s) so that they are above the crossover frequency. Therefore, any magnitude
boosting will have no effect on stability when the open loop gain is less than
unity. Unfortunately, we can only partially achieve these results and the
phase lead design method will by nature have tJ:Eterative in order to correct

for the effects of the open loop magnitude boosting.
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The magnitude of GZ(S) can be expressed as

e (mm/w2)2
I(‘-Z(jw)l = Llim) - e (26)
1+ (w/wz)




o

wem
Similarily, the phase of GZ(S) is given as {
e
w w
V(W) = ArglG, ()] = tan (W) - tan () = tan | 22 | (27)
2 2 1 + m(w/w,)

It is of interest to note that the maximum phase of Y(jw) is equal to

: = bl o Calomd
b(Jw ) = tan G sin “(C—7) (28)
which occurs at a frequency of
i wz//g (29)

The magnitude of Gz(jw) at W is given as

l6,Gu )| = 1/Va - (30)

The design approach for the phase lead case is more complicated than the
previous two methods. The reason is that m is not avariable and is generally

given by (25), when R, is equal to infinity, and that the amount of phase lead

available from the pgase lead network is limited and may not be sufficient to
meet the phase margin specifications. Therefore, the first step in our design
procedure will be to find where we are in relation to these two problems.

Let us first assume that m is fixed and find out whether the phase lead
compensation scheme can meet the specifications. Let the phase margin of the
uncompensated open loop gain be PM. If the desired phase margin is ¢m,

then the amount of phase lead required for compensation is
Y = ¢m - PM+ 0 (31)

where 0 is a phase correction factor which accounts for magnitude boosting of
the open loop gain and a subsequent shift of wc to the right to a new value wc'.
Unfortunately, 6 is not known prior to the problem but will generally fall in
the range of 3 to 10 degrees for most problems. Next, we can find the location
of the pole, wz, and the zero, w2/m, breakpoints of the phase lead network by

equating w(jwi) given in (27) to (31). Solving for w2/m1 yields,

w

2 m-l J/ 4m 2 ]
e 1+ = omeeme i tan: | (32)
wi 2tany [ (m—1)2

-d
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This expression shows where to locate the pole of the phase lead network
with respect to a frequency wi. When wzlwi becomes equal to /E; then we

see from (29) that the maximum possible phase lead is obtained from the phase
lead network. For smaller values of w,/w, than /E)less phase lead will be

2.
obtained. Therefore, we may write that

u)z/wi > v/m (33)

in order to satisfy the phase margin specifications. One can use this
constraint to solve for the maximum value of . However, a more stringent
constraint is obtained from the requirement that wzlwi must be a real number.

We find that for the argument of the radical of (32) to be positive that

-1
P < tan_l[———] (34)
2vm

If (34) cannot be satisfied, then one will have to be able to vary m or be
able to use a different form of compensation as well as phase lead compensation
to meet the phase margin requirements. A design procedure based on the above

ideas is outlined below:

P < tan_l[(mrl)//z ]

1. It assumed that a and B are known, ¢m is specified, R, is infinite,

and that m = 1/8. :
2. Choose a value for 0. (0 = 5 degrees is a good first guess.)
3. Find ¢ from (31).

4., Solve for w, and wz/m in terms of Wy
5. Evaluate the parameter K where K is defined as

2
5 1+ (ww /w,)
¥ |BB I =/ im 22 (35)
1+ (w;/w,y)

6. Find the frequency, wc', where the uncompensated open loop gain is

equal to -20 loglOK. (We will set w, equal to this frequency.)

i
7. Find the phase margin, PM', at wc'.
8. Form 6' = PM - PM'.

9. a.) If 0'>0, increase the value of 6 and go back to step 3.
b.) If 0'<6, decrease the value of 6 and go back to step 3.
c. If 6'%9, then the value of C, is given by (24) and (25) where

w, is obtained from step 4 with wi=wc'. The new crossover frequency

is w '
c




Sy

. The above design procedure is illustrated by the following example.

Example 3

Use the phase lead compensation technique to achieve a phase margin
of 60 degrees for the circuit of Fig. 7 when the amplifier's gain ié
given by (7).

Evaluating (31) with 6=0° gives Y=23°. With m =1/B=6, (34) gives
the constraint that $<45.6°. Therefore, this problem should be easily
solved by the previous design procedure providing 6 does not become larger
than about 22°. The iterative procedure is started with 6=0°. wz/wi=ll.2457
and wzlwim is 1.8743. This gives K=1.1290 which corresponds to a -1.0537 dB
boost. Thus wc'=l.32x104 rps which gives PM'= 35°. Since PM=37°, then
8' is about 2°. _

The second time through the procedure, 6=3°. Thus w2/w1=9.6284 and
w2/w1m=l.6047 which gives a K=1.1720. This value of K corresponds to a
1.3783 dB boost which leads to wc'=l.36x104 rps. The phase margin at this
frequency is PM'= 34°. Thus 0'=3 . Now we set wi=wc'=l.36x104 rps. This
gives the zero breakpoint at 2.182x104 rps and the pole breakpoint at

. 13.0x104 rps. The new crossover frequency is 1.36x104 rps which has
shifted to the right from the original crossover frequency of 1.25x104 rps.
The resulting phase margin is indicated upon Fig. 16 as ¢m. We note that
the asymptotic value exceeds 60 degrees. However, the actual value as
calculated from the sum of the arctangents is 54.54°. One of the problems
in our technique is that we used the phase margins (PM and PM') from the
asymptotic curves rather than the exact values. If more accuracy is desired
then one should use the actual values of phase margin. This was done and
it was found that the value of 0=6°, resulted in a new crossover frequency
of 1.48x104 rps and an actual phase margin of 60.1024°. For the more

4

accurate design, the last iteration gave =6.3363mi=6.3363wc'=9.3777x10

2
rps. Thus from (24) we find that C2=l.28nF. Happily, we note that the
influence of C, upon the closed loop transfer function will occur beyond

2
the new crossover frequency.

The design procedurg listed above may be unsuccessful if the value of Y
becomes too great. Therefore, we need to make both m and w, variables that
. can be used for design purpose. Even then, there will be a limit to what the
phase lead compensation method can accomplish. At this point It will be neceusary

to augment the phase lcad technlque by one of the previous two techniques.
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R3#infinity

1. Reduce the desired phase margin ¢m to gvvgiue ¢m' which will satisfy
(34). Use the previous design procedure to find w, .
2. Find the magnitude of the phase lead compensated open loop gain in
step 1 where the additional phase margin ¢m- ¢m' is obtained. Designate
this value as k in dB. Use the DC loop reduction technique to achieve

the additional phase margin. R_ can be found from

3
BRZ
55T a1 (36)
where K is given by (6).
3. Finally; C2 is designed from (22) as
R
T 2
C, = (B + =5 (37)
2 R2w2 R3

An example is given to illustrate this method.

Example 4

Let us assume that the amplifier of Example 3 has 10 dB additional
gain and let us attempt to compensate the circuit in Fig. 7 using this
amplifier to have a phase margin of 60°. The poles of the amplifier are
the same as given in (7).

The open loop magnitude and phase of the circuit is shown in Fig. 17.
We note that the phase margin, PM, is about 12° at a crossover frequency of
about 2.2xlO4 rps. We see that y is equal to 48° assuming 6 equal 0%

Eq. (34) shows that the maximum value of Yy is about 45.5°. Therefore we
cannot expect to obtain the desired phase margin using the previous design.
Thus let us select a phase margin, ¢m', of 45°. Using the iteratiye design
on page 16 and using the exact phase shifts rather than the asymptotic
values, we find that for 6=9°that w2=ll.843x104 rps, w2/m=1.9738x104 rps,
wc'=2.9x104 rps, and ¢m'=44.86°.

The resulting partial compensation by the phase lead technique is
shown on Fig. 17. Now we need to find the frequency where we obtain the
additional 15° of phase margin. Unfortunately, the phase asymptotes are

treacherous in the vicinity of a breakpoint so that we again use the exact
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phase shifts determined by the sum of the arctangents of the breakpoints.
Therefore, we find that at wc'=l.lx104 rps that the actual phase shift is
59.8°. At this frequency k is equal to about 12 dB. Hence, K=0.2512.
Eq. (36) gives R3=2.795KQ and (37) gives C2=4.033nF. The‘resulting

compensated open loop magnitude and phase response is shown on Fig. 17.
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